
CASE STUDY:

Legacy Application Confirmation Study

How Much Faster Is

‘Faster’?

At Monza Cloud, we know the capabilities of AzStudio software to move you into Azure faster, through our

own development efforts and in seeing how our customers use the software. However, to increase our
understanding, we really wanted to test AzStudio’s speed-to-delivery for a very common use case—

updating legacy applications. No gimmicks. No unfair advantages. Simply an objective exhibition to
substantiate the power and the advantage of using the AzStudio toolset vs. going it alone.
Ultimately, we wanted to be able to quantitatively answer the question, “How much faster is developing
with AzStudio than programming with only the raw Azure application programming interfaces?”

The Hypothesis

In order to showcase AzStudio’s unprecedented versatility and efficacy, our team prepared to replicate a
side-by-side performance comparison of a legacy app modernization initiative—where AzStudio

development tools were pitted against a straight conversion to Azure PaaS using only Azure’s APIs. Based
on the results we typically see with AzStudio, our developers predicted that, even in the face of an

unknown, untested legacy application, AzStudio would deliver a faster solution than manual processes and

would provide an infrastructure capable of supporting more features within the app itself.

The team decided to use a legacy Twitter application—an app that no one on the development team was

familiar with—for their test case as it was a good example of a sensible on premises legacy .NET
application that was not likely to be sunsetted or too expensive to rule it ineligible for migration. The
modernized legacy application would be much cheaper and better as a native PaaS app.

At the end of the experiment, our developers would compare the updated applications produced by the
different modernization efforts for time to value and quality of the final application.

• A Twitter account to

get the necessary

credentials to make

search requests

• The VM on Azure for

hosting

• How to setup and use a
storage container and queue

• Web roles/workers and types

of storage containers to think

about the best way to set up

and deploy the application

• SQL versus table storage

• How to use a portal to create a
SQL server with the lowest

requirements necessary

• How to allow their IP address
in the firewall

RESEARCHING/READINGSETTING UP

SETUP AND RESEARCH: 5 HOURS (300 MINUTES)

The Experiment

In order to standardize the expertise and manpower used throughout the experimentation process, we
chose to use a beginner-intermediate level developer with 2.5 years of professional programming
experience in C# and .NET to conduct the performance comparisons. In fact, like many junior developers
tasked with modernization efforts, the developer had very little experience using the AzStudio framework
or coding against raw Azure APIs.
As you will see, some steps are repeated for both tests (setting up a Twitter account, etc.). This is important
for a fair assessment, and is to be expected since we are attempting to perform the same migration via
different methods.

WHAT IT TAKES: AZURE API – MANUAL MODERNIZATION

The developer immediately set to work modernizing the legacy GitHub application, first by leveraging the
application programming interface intrinsic to Azure PaaS. Their modernization process and time intervals
are as follows:

CODING: 8 HOURS, 20 MINUTES (500 MINUTES)

TESTING: 8 HOURS, 10 MINUTES (490 MINUTES)

TOTAL TIME REQUIRED: 22 HOURS, 20 MINUTES (1340 MINUTES)

• Applied Twitter account

credentials to configuration file
to run client as is and see what

it did

• Changed existing client from
using a message queue to a

cloud queue

• Created web form for

searching/saving to queue

• Created worker to stream

search results to queue and to

read from queue

• Used portal to:

• Set up server/SQL

database

• Add IP address to firewall
exception

• Create status and user

tables in SSMS

• Add connection info to

App.config

• Wrote stored procedures to

insert into status/user tables

• Launched packaging/deploying

workers to Azure

• Client as-is to see how it performed

• Code update to cloud queue to make sure it

successfully wrote to cloud queue

• Web form for searching

• Worker streaming search results to queue

• Worker reading from queue/modifying code to use

cloud queue attributes (like looping)

• Data store method and preventing bad insertions

using SQL commands

• Stored procedures inserting into status/user tables

• Deployed workers to make sure that they were

reading/writing from the queue as well as writing

SQL tables

THE DEVELOPER

THE MONZA CLOUD DEVELOPER PERFORMED FINALS TESTS BY RUNNING,
MODIFYING, AND/OR TESTING

Once tallied up, the time it took for a single dev to

complete the modernization process using Azure PaaS

API was a grueling three day deep-dive (22 hours and

20 minutes). Admittedly, when a developer is tasked
with the modernization of an application that they

don’t know, they are faced with a myriad of feature

choices. This feeling is especially acute for new users to
PaaS have a huge learning curve to overcome. As such,
there was a great deal of testing involved to arrive at a

plausible final product, and the dev’s first attempt was,
naturally, not perfectly efficient. Inefficiency during
these types of modernization efforts is expected
because most companies make junior programmers
responsible for modernizing suites of legacy apps, and

each modernization effort has its own unique
challenges.

The developer spent quite a lot of time doing research

and reading about Twitter credential security, Azure

queues, and database architectures before he settled

on a method that he could be confident in deploying.
But, because of this planning and research, when it
came time to program, the developer was able to

execute his plan directly in code. He spent a bit of time
tweaking and setting up database and networking

features in the Azure portal. And, while his path was
straightforward, he had to write a lot of code to

reestablish many of the fundamental functions of that

app in a PaaS-enabled environment. This, of course,
also greatly improved the application vs. the original
legacy version as you’ll see in the results. Testing was
also an elongated process, involving some trial and

error, as the developer had to develop and execute
tests for common issues and use a variety of dense

and technical logs to debug.

Manual Modernization Continued..

What it Takes: AzStudio Development Software – Guided Modernization

After completing the Azure API modernization challenge, the Monza Cloud developer prepared to modernize the

application again, but this time, leveraging the streamlined capabilities offered through the AzStudio suite. This
second modernization process and timeline breakdown are as follows. Again, you will see that we duplicated
some of the effort (creating Twitter accounts, etc.) to emulate the full scope of the modernization.

• A Twitter account to get the

necessary credentials to make

search requests

• Additional setup and research are unnecessary

due to AzStudio’s preset framework and built-in

features

RESEARCHING/READINGSETTING UP

SETUP AND RESEARCH: 20 MINUTES

CODING: 4 HOURS, 10 MINUTES (250 MINUTES)

• Created a queue and blob for worker from

existing AzStudio framework
• Created worked for stream search and queue read

• Changed existing code to use Az.QueueManager
• Wrote tables in SSMS (required some repetition

because of the misreading of a stubborn column

name)

• Created script and execute to create stored
procedures data class

• Wrote methods to insert to tables using stored

procedures

• Created plugins for status and user tables

THE DEVELOPER

TESTING: 3 HOURS (180 MINUTES)

TOTAL TIME REQUIRED: 7 HOURS, 30 MINUTES (450 MINUTES)

• Stream search to queue worker

THE MONZA CLOUD DEVELOPER PERFORMED FINALS TESTS BY RUNNING,
MODIFYING, AND/OR TESTING

• Stored procedures• Queue reader

What took almost three full workdays to modernize on

Azure APIs alone took the same developer less than a

single day (7 hours and 30 minutes) to complete using
AzStudio developer tools. And, as you’ll see later in the
results, the new application was much more functional

as a PaaS app (even more so because of some

additional AzStudio functionality). The developer was
able to save considerable time and effort by not having
to do exhaustive research before even beginning the
coding process because he was able to take advantage

of the core queue and database functionality that

already existed inside of the framework. And, when it
came time to program, much of the foundational code

was already available to the developer as part of

AzStudio’s toolset, so the amount of custom

programming was reduced to merely customizing

existing frameworks. Again, testing was improved by
the guided nature of AzStudio. The Developer was able
to quickly use internal tools. Like many junior
programmers, our developer made a few programming

errors, but by using the enhanced logging to test that

the application was performing correctly, he

determined that he needed to use a different type of
object storage for his messaging queues and quickly
resolve the issue. AzStudio’s preset framework and
intuitive feature selections allowed for a more user-

friendly and time-efficient procedure.

The manually coded application functioned

mostly the same as the original Twitter application,

with simplistic logging, error-handling, and transient

fault-handling. The application, as with the original,
still needed to be hardcoded with the Twitter

handle to be followed. All in all, the developer had
moved the application from an on-premise

environment with local storage and MSMQ, to an

Azure PaaS/IaaS environment with virtual storage

and stream search and worker reader queues. The
developer was also able to add additional SQL

database tables and hand-written stored

procedures to read and write to them. The
modernization effort was a success! The new PaaS
application became cheaper to run, easier to

maintain, and now includes a built-in ability to scale

capacity.

In the second phase of the experiment, the
developer made all of the application changes and

modifications listed above in the manual
modernization, but these changes were enhanced

by the AzStudio framework. This second application
only partially functioned like the original legacy

app—instead, it performed even better than the

original. The configuration and management were
changed and no VM was necessary as it was now a

pure PaaS application. New administration and
configuration tools were architected so that they
could be modified without having to make root level
code changes. This allowed the Twitter handle to be
updated on the fly, without redeploying the
application. In fact, this new AzStudio-boosted
version is ripe for extending functionality. With only
another 1-2 hours of work incorporating existing
AzStudio functionality, you’d extend the capabilities

of the application far beyond the original

application (e.g. to monitor multiple Twitter streams,
configure alerts, deploy reports and scale much
more readily).

The application had been significantly improved
with little effort and time on the coder’s part.
AzStudio-driven improvements included:

• Better logging, error-handling, and transient
fault-handling due to the AzStudio framework

• PaaS resources were more secure and

configured correctly
• Code was both testable and self-healing (if code

called a resource that didn’t exist, AzStudio’s
proprietary ‘Configuration-as-a-Service’ [CaaS]
code would create it instantaneously)

• Queue overflow and scalability were now
configured in multiple dimensions (volume of
traffic in queue, federation, size of items in
queue, etc.)

• Reporting tools, graphs, etc.

Not only that, this new application was, overall,
more secure than either the original or the

manually-written version because AzStudio

meticulously and clearly walks the developer

through security best practices and configuration
protocols. All data is encrypted in transit and much
of it is encrypted at rest; therefore, when the

developer needs to change passwords,

configurations, etc., they are changed directly from
AzStudio. This effectively locks down crucial data and
code while limiting access to only what is needed.

The Results – Application Quality

Looking to modernize your legacy applications without
the time, cost, and hassle of a direct conversion to
Azure PaaS?

AzStudio will increase your speed-to-delivery and provide you with a more

robust and secure end product. Let’s talk about incorporating AzStudio into
your next modernization effort.

Conclusion – 65% Time Savings and a
Better Quality App with AzStudio

AzStudio went toe-to-toe with raw Azure APIs and won.

And it wasn’t just by speed alone—although a 65% cost/time
savings is impressive by itself. In congruence with its speed-to-
delivery, AzStudio allowed the developer to seamlessly (and

nearly effortlessly) add a spectrum of new features and
security improvements that the manual process would not

have been able to accommodate. Intrinsically, AzStudio allows
developers to skip the PaaS learning curve and the headaches

of indiscriminate research by providing a set of common

standards and minimizing time wasted on incompatible or

foolhardy code.

In short, our experiment was able to quantitatively prove that
the AzStudio framework was not only more efficient, it was
more beneficial to the developer and end users as well.

Want to Try Testing This for Yourself?

If you’re still one of the skeptics, feel free to replicate the experiment for yourself. Contact us for evaluation licenses so
that you can compare the modernization techniques yourself. However, please ensure that your modernized
application with AzStudio largely matches the specifications of our own. (If you continued to add the myriad of
features available in AzStudio during the modernization process, you would greatly improve the app, but it would
become very difficult to measure a direct time/cost comparison in the two efforts).

“AzStudio has a set of features that

provide each developer on your team

with a framework so that they don’t

have to trudge through all of the

unnecessary preliminary preparatory

work and research. It simply sets them

on a path using Microsoft’s suggested

best practices for Azure from the

beginning,”

 —Ed Hunkin, COO and founding

member of Monza Cloud

WWW.MONZACLOUD.COM

